
LAMP-TR-136
CS-TR-4836
CFAR-TR-1017
UMIACS-TR-2006-51

DEC 2006

SCRIPT-INDEPENDENT TEXT LINE
SEGMENTATION IN FREESTYLE HANDWRITTEN

DOCUMENTS

LI Yi1, Yefeng Zheng2, David Doermann1, and Stefan Jaeger1

1Language and Media Processing Laboratory
Institute for Advanced Computer Studies

University of Maryland, College Park, MD 20742-3275
{liyi,doermann,jaeger}@umiacs.umd.edu

and
2Siemens Corporate Research

755 College Road East, Princeton, NJ 08540
yefeng.zheng@siemens.com

Abstract

Text line segmentation in freestyle handwritten documents remains an open document analysis
problem. Curvilinear text lines and small gaps between neighboring text lines present a challenge
to algorithms developed for machine printed or hand-printed documents. In this paper, we propose
a novel approach based on density estimation and a state-of-the-art image segmentation technique,
the level set method. From an input document image, we estimate a probability map, where each
element represents the probability that the underlying pixel belongs to a text line. The level set
method is then exploited to determine the boundary of neighboring text lines by evolving an initial
estimate. Unlike most connected component based methods [1, 2], the proposed algorithm does
not use any script-specific knowledge. Extensive quantitative experiments on freestyle handwritten
documents with diverse scripts, such as Arabic, Chinese, Korean, and Hindi, demonstrate that
our algorithm consistently outperforms previous methods [3, 1, 2]. Further experiments show the
proposed algorithm is robust to scale change, rotation, and noise.

Keywords: Handwritten Text Line Segmentation, Document Image Analysis, Density
Estimation, Level Set Methods

The support of this research by the Department of Defense under contract MDA-9040-2C-0406 is gratefully
acknowledged.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2006 2. REPORT TYPE

3. DATES COVERED
 00-12-2006 to 00-12-2006

4. TITLE AND SUBTITLE
Script-Independent Text Line Segmentation in Freestyle Handwritten
Documents

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland,Language and Media Processing
Laboratory,Institute for Advanced Computer Studies,College
Park,MD,20742-3275

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

28

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

Text line segmentation is one of the major components in document image analysis. It provides
crucial information for skew correction, zone segmentation, and character recognition. Although
text line segmentation for machine printed or hand-printed documents is usually seen as a solved
problem [4], freestyle handwritten text lines still present a significant challenge. In particular,

1. Handwritten text lines are curvilinear. Linear or piece-wise linear approximation is not
accurate in general.

2. Neighboring handwritten text lines may be close or touch each other. No well-defined
baselines exist for most handwritten documents.

Table 1: Comparison between machine printed documents and handwritten documents.
Text line Gap between neighboring lines Layout

Machine printed documents Straight Significant Regular
Handwritten documents Curvilinear Insignificant Irregular

Table 1 lists a detail comparison between handwritten and machine printed documents and
illustrates the difficulties in handwritten text line segmentation. Figure 1 shows the segmentation
results of the Docstrum algorithm [1], a well-known layout analysis algorithm, on a machine
printed document and a freestyle handwritten document. As we can see, though the algorithm
works reasonably well on the machine printed document, it is still a significant challenge to
segment text lines in handwritten documents. Bounding boxes are widely used in machine printed
document analysis to represent the segmentation results of zones, text lines, words, and characters.
However, it is not trivial to use bounding boxes to label overlapping curvilinear text lines, as
shown in Figure 1b. A closed curve (or a polygon as an approximation) more appropriately
represents the boundary of a text line. Previous text line segmentation methods, such as connected
component based methods, work directly on the input image (generally, a binary image). For
connected component analysis, each pixel is treated equally and a change of one pixel may result
in a significantly different result. If two neighboring text lines touch each other through even a
single handwritten stroke, the segmentation algorithm fails. We deal with this problem using a
probabilistic approach. The distribution of black pixels in a document is not uniform. At the
center of a text line, a pixel is more likely to be a black pixel than at a text line gap. Therefore,
we estimate a probability map, where each pixel represents the probability that it belongs to a
text line. As shown in Figure 2b, the text line structure is enhanced. Based on the probability
map, the boundaries of text lines can be further determined using region growth techniques. To
the best of our knowledge, this is the first paper to study the text line segmentation problem from
the density estimation perspective. In this paper, we make the following contributions:

1. Unlike previous methods, we estimate the probability distribution function (PDF) of two
dimensional variables that represent the text line distribution.

2. With the priori knowledge that a text line is a horizontally elongated shape, we use a
state-of-the-art region growth technique to determine the text line boundary based on the
PDF.

2

(a) (b)

(c) (d)

Figure 1: (a) A handwritten document image; (c) A machine printed document image. The text
line segmentation results using the Docstrum method [1] are shown in (b) and (d) using bounding
boxes, respectively.

3. Our approach combines the advantages of the bottom-up and top-down approaches, i.e.,
script independence of the projection based methods and capability of processing a complex
layout of the connected component based methods.

Preliminary results of the proposed approach were published in our previous conference papers
[5, 6]. In this paper, we discuss a novel view of our approach and present extensive quantitative
comparison experiments on a large handwriting data set using approximately ten scripts.

This paper has the following organization. In Section 2, we review some related works. Text line
density estimation and text line boundary evolution using the level set method are described in
Section 3 and Section 4, respectively. Section 5 presents an extensive performance evaluation and
quantitative comparison of the proposed method and the previous methods on a large handwriting
data set. This paper ends with a summary and a brief discussion of future work.

3

2 Related Work

In this section, we review previous work on text line segmentation in machine printed docu-
ments and some extensions for handwritten documents. The limitations of the previous work on
handwritten documents are also discussed.

2.1 Layout Hierarchy in Document Image

A document can be viewed as an organization of a hierarchical structure of pages, zones, text
lines, words, and characters. Layout analysis attempts to extract this hierarchical structure from
an image representation [7, 8]. To segment a document at a specified level, previous work on
machine printed document analysis relies on the homogeneity inside a region and a significant
gap between neighboring regions [9]. Two methodologies, bottom-up or top-down, were used
frequently in previous work for layout analysis [10]. In the bottom-up methodology, connected
components are grouped into lines, and lines are grouped into zones, and so on. In the top-down
methodology, a document page is first segmented into zones, and a zone is further segmented into
lines, and so on.

Although the techniques for machine printed documents are mature, it is much more challenging
to analyze a freestyle handwritten document due to reasons including:

1. Non-Manhattan layout at the page level. The irregular page layout cannot be handled by
simple rules, such as grouping based on geometric relationships of neighboring components.

2. Curvilinear text lines. Linear approximation and regression are not always accurate in
general cases.

3. Connected words. Due to the connectivity between characters and words, it is not trivial to
analyze, filter, and process the connected components.

4. Character size variation. Even on the same page, character size can be quite different. It
causes problems in estimating the dominant character size, which is an important parameter
for the bottom-up connected component based text line segmentation algorithms [1].

2.2 Text Line Segmentation

Text line segmentation is important in layout analysis because it serves as the intermediary be-
tween page analysis and word segmentation. For example, if we obtain the text lines, we can
group them into zones based on the similarity of orientation and alignment, or further segment
text lines into words. Therefore, text lines are crucial for analyzing the hierarchy of document
layouts.

As a special case of layout analysis, previous text line segmentation algorithms can be roughly
categorized as bottom-up or top-down. As a bottom-up approach, connected component based
methods [2, 11] merge neighboring connected components using rules based on the geometric
relationship between neighboring blocks, such as distance, overlap, and size compatibility. Al-
though connected component grouping techniques can process complex layouts, these methods
are sensitive to topological changes of the connected components. For example, a handwritten

4

stroke may cross two neighboring text lines, making two words in two text lines inseparable at the
component level. In another disadvantage, they may be script dependent. For example, spaces
occur between neighboring words in English, but a Chinese text line is composed of a string of
characters without word spaces. Therefore, it is difficult to derive a script-independent merging
rule based on connected components.

Projection based methods [3] may be one of the most successful top-down algorithms for ma-
chine printed documents. It can be used in many problems such as deskewing [12]. It assumes
that the gap between two neighboring text lines is significant and the projection of text lines is
easily separable in the x or y direction. However, this method cannot be used directly in freestyle
handwritten documents, unless gaps between two neighboring text lines are significant or hand-
written text lines are straight [13, 14]. The top-down approaches also have the disadvantage that
they cannot process complex non-Manhattan layouts.

Text line segmentation approaches for machine printed documents are often based on the as-
sumption of straight text lines. This assumption fails in a freestyle handwritten document where
text lines are often curvilinear. Some approaches, such as the projection based methods, can be
extended to deal with slightly curved text lines. Tripathy and Pal [15] proposed a method of
dividing the image into multiple columns, using a projection based method in each column, and
combining the results of adjacent columns into a longer text line. Generally, they achieved better
results than naive methods, but the results of two adjacent columns may be ambiguous so it is
still difficult to generate good results. The performance of connected component based methods
on a handwritten document can also be improved by estimating the local orientation of the text
line and using it to guide the merging of connected components [2]. Other researchers proposed
different assumptions for their specific case [16] or for a specific script [17].

Rule lines often guide a person’s writing [18]. Writers either write above rule lines (e.g., in
Chinese) or cross the rule lines (e.g., in Hindi). If the writing follows the rule lines, text line
segmentation may be easier since rule lines provide hints about the text line structure. However,
if rule lines are ignored by a writer, they degrade the performance. For example, rule lines
make the connected component analysis difficult. Projection profile analysis also has problems
in determining peaks and valleys given rule lines. In true freestyle handwritten documents, most
cases lie in the middle of these two extremes. Some text lines follow the rule lines well, while
other text lines may cross multiple rule lines.

3 Text Line Density Estimation

In this section we describe the motivation for estimating a probability map from an input image
and discuss the non-parametric method used in our approach. Without loss of generality, we
assume character pixels are black and represented as “1”s in a binary image, while background
pixels are white and “0”s. We also assume the orientation of text lines are locally uniform, and
a skew correction method can normalize the text lines to orient horizontally. A relatively large
variation in orientation, e.g., up to ±10◦, is still allowed. However, zone segmentation [19] may
be necessary to separate text lines with different orientations (e.g., horizontal versus vertical) into
different zones if they appear on the same document.

5

3.1 Motivation

Performing a segmentation directly on a binary image has been accepted without criticism for
decades, although it happens that some difficulties are inherently involved. No evidence exists
that humans use solely traditional methods, such as projection profile analysis, to segment hand-
written text lines. The computer algorithms, of course, do not necessarily mimic human behavior,
but human behavior may give us some insights to explore better algorithms. A certain pattern
naturally occurs when human beings write text lines in documents. For example, writing speed
may remain almost constant within a paragraph, so distances between two adjacent text lines
are usually similar. This motivates us to consider the probability density function that generates
this pattern. Instead of segmenting directly on a binary image, we convert it to a probability
map where each element represents the probability of this pixel belonging to a text line. For
visualization, we rescaled the probability map to a gray-scale image (Figure 2b). This estimated
probability map offers many working advantages. We can avoid calculating some geometric prop-
erties, such as centroid and connected component size, at the beginning, because they are not
accurate for handwritten documents. In another advantage, we can adopt many state-of-the-art
algorithms to analyze the two dimensional density function. Finally our method is not limited to
binary images and can be used for gray-scale and color images.

The black pixels in an image can be regarded as two dimensional random variables. They are
generated by an unknown probability density function (PDF). This PDF represents the distri-
bution of text lines. Specifically, the PDF is continuous and has larger values in the text line
area, while smaller values in the gap and marginal area. Our approach estimates the PDF from
black pixels, which are the random variables. Peaks on the probability map represent text lines,
while valleys indicate they are the boundary between neighboring text lines. In our approach,
this probability map is analyzed using the level set method [20] to segment text lines.

A real problem often involves multi-modal densities, whose density functions are usually un-
known. Therefore, non-parametric density estimation should be used. The Parzen window [21]
is one non-parametric density estimation technique. Isotropic kernels are frequently used if no
domain-specific prior is given [22]. Without loss of generality, we assume the reading order of
text line to be left to right (or right to left) in handwriting, so the text line orientation is gener-
ally horizontal. Therefore, an anisotropic kernel is more appropriate to estimate the density. A
simple anisotropic kernel can be a 2D Gaussian with different standard deviations in the x and y
directions.

3.2 Density Estimation Using an Anisotropic Kernel

Given an input binary image I(x, y), for x = 1, . . . ,M and y = 1, . . . , N , we want to estimate
the probability map PDFest(x, y), for 1 ≤ x ≤ M and 1 ≤ y ≤ M , from the observation I(x, y).
Kernel-based non-parametric methods are widely used in statistics. Given a continuous Gaussian
kernel ϕ in a two dimensional space, the kernel-based estimate is

PDFest(x, y) =
∫ ∞

−∞

∫ ∞

−∞
ϕ(u, v)I(x− u, y − v)dudv. (1)

For computational efficiency, the support region of the Gaussian kernel is often truncated in
discrete implementation. If the standard deviations in the x and y directions are σx and σy

6

respectively, the window size is chosen as 3σx and 3σy to minimize the truncation error. The
estimated probability map, PDFest(x, y), has high density values (dark, as shown in Figure 2b)
on the text lines, but low density values (light) for the gaps.

(a) (b) (c)

(d) (e) (f)

Figure 2: Illustration of the proposed text line segmentation method. (a) A handwritten docu-
ment; (b) Density estimation using anisotropic kernel; (c) Initial estimate of text lines; (d) Result
after 10 iterations of evolution using the level set method; (e) After connecting a few broken text
lines in post-processing; (f) The final text line segmentation result.

Parzen window techniques guarantee the result PDF is continuous and smooth if Gaussian
kernel is adopted, which is good for boundary selection. For example, we can use the gradient-
based methods for our purpose, as presented in the next section. In addition to its theoretical
advantage, this technique is also practically meaningful. As shown in Figure 2b, the details
irrelevant to the task of text line segmentation, such as the script, content of the text, and word
gaps, have been blurred, while the text line structures are enhanced.

7

4 Determining the Text Line Boundary

Peaks on the estimated probability map represent text lines, while valleys indicate they are be-
tween neighboring text lines boundaries, as shown in Figure 2b. We use a closed curve to represent
the text line boundary. To obtain a unique segmentation, two adjacent text line regions should not
overlap and their boundaries should not cross. Thresholding may give a reasonable segmentation
result. However, the segmented text lines may be fragmented, as shown in Figure 2c. This initial
estimate of the text line boundary must evolve by considering the image information to obtain
the final accurate segmentation results. Similar problems related to continuous regions and their
boundaries have been studied in modern geometry and fluid mechanics theory. The continuous
closed boundaries evolve to their desired location under the guidance of a partial differential equa-
tion (PDE). The level set method [20] is an effective algorithm, in which the closed level set can
grow and merge automatically. It has been adopted successfully in many fields, such as fluid me-
chanics, computer animation, and computer vision. The level set method deals with topological
changes naturally and guarantees no overlapping in different regions, so it is well-suited for our
application. In this section we adopt the level set method for the boundary evolution.

4.1 Level Set Method

For the basic idea of the level set method, the boundary evolves by its partial derivative and an
external vector field. A specific formulation of the level set method can be written as follows [23].

∂f

∂t
+ SN∇f = bk|∇f |, (2)

where f is the implicit function and its zero level set represents a boundary, t denotes the time,
and ∂f

∂t
represents the movement of the implicit function across time. The movement is controlled

by bk, which usually is the curvature of the boundary, and the scalar SN , which is the movement
speed of the boundary in the normal direction.

In the level set method, the closed boundary of a text line is represented with an implicit
function f , which has negative values inside, positive values outside, and a zero value for the
boundary. We then evolve the function and keep tracking the zero level set according to the PDE
(Equation (2)). So the zero level set grows, merges, and stops automatically to the final text line
boundary, guided by the PDE. The numerical solution of Equation (2) is based on a grid. First,
an initial estimate of the function is calculated, and then the function is updated on a discrete
grid. Each update is also called one iteration.

4.2 Text Line Boundary Evolution

The level set method is a general framework. In order to achieve good results for a specified
application, domain specific knowledge should be exploited. In this section, we discuss our modi-
fications under the framework of the level set method for text line boundary evolution.

To evolve the text line boundary, we need an initial estimate of the text lines. Pixels with high
density values allow a suitable initial estimate (Figure 2c). Global or local adaptive thresholding
(such as the Niblack method [24]) can be used for this purpose. The initial estimate need not be

8

very accurate. As long as at least one part of a text line is extracted, we can achieve a good final
segmentation.

Text lines tend to be directional (e.g., horizontal in our case). We can tune the level set method
to exploit this a priori knowledge. In particular:

1. We force the boundary to grow faster in the horizontal direction by setting the horizontal
update step larger than the vertical step. It is equivalent to compressing the image in
the horizontal direction, and updating the implicit function f using the same step in both
directions, but our approach is more efficient.

2. Curvature is adopted using a strategy called “the rich get richer” — the bk in Equation
(2) is set to the square of actual curvature. By our assumption, text lines are horizontally
elongated, therefore, curvatures of left and right ends of boundaries are larger than those of
top and bottom, which means the text line tends to grow faster in the horizontal direction.

In our experiments, the density estimation, PDFest, serves as the normal speed SN . Using
PDFest as the speed, the boundary will grow faster inside the text lines, where black pixel densities
are large, and slower when it approaches gaps. So, PDFest actually controls the speed of the
boundary.

Another constraint we want to enforce under the framework of the level set method is to allow
merging of boundaries only in the horizontal direction. However, a merge in a vertical direction
can happen after each iteration, if nothing prevents it. To solve this problem, we need to detect
the merge when the boundary evolves.

At time t we retrieve the zero level set, and we obtain N bounding boxes of closed region
St

n, n = 1, . . . , N . Suppose, after iteration t+1, the zero level sets are St+1
n , n = 1, . . . ,M,M ≤ N .

For each St+1
n , it must contain one or more region of St

n’s since all regions are growing. Assume
St+1

i contains, but is not limited to St
j and St

k. We adopt a geometry-based detection to evaluate
St

j and St
k. A collision happens if St

j overlaps St
k in the horizontal direction. One reasonable

criteria is:
left(St

k) ≤ mean(St
j) ≤ right(St

k) (3)

or
left(St

j) ≤ mean(St
k) ≤ right(St

j) (4)

where mean(St
k) is the x component of center of gravity of St

k. right(St
k) and left(St

k) are the the
x components of right and left end of St

k, respectively.
If Equation (3) or Equation (4) holds, we calculate the collision on the x axis as follows. Without

loss of generality, we assume St
j is under St

k in the image, but two regions do not necessarily
intersect (Figure 3a and 3b). That is, top(St

k) ≤ top(St
j) given the origin is the upper left corner

of the image. We define the boundary of region R as the follows:

top(R) = min(bottom(St
k), top(St

j)) (5)

bottom(R) = max(bottom(St
k), top(St

j)) (6)

left(R) = max(left(St
k), left(St

j)) (7)

right(R) = min(right(St
k), right(St

j)) (8)

9

(a)

(b)

Figure 3: The illustration of the collision.

If collisions occur, we roll back to time t, and set SN and bk of the collision region R to zero.
Since there is no force to evolve the boundaries, the two adjacent lines will not merge in this region
in future iterations. Finally, we redo the evolution under the new configuration for iteration t+1.

In summary, the procedure operates as follows:

1. Binarize PDFest to obtain initial estimates LSinitial using the Niblack algorithm [24].

2. Initialize the level set function f using the initial estimate LSinitial. A simple initialization
procedure calculates the distance transform of LSinitial as follows:

f = DIST (LS+
initial)−DIST (LS−

initial) (9)

where LS+
initial(x, y) = 1 iff LSinitial(x, y) > 0, LS−

initial(x, y) = 1 iff LSinitial(x, y) = 0 and
DIST (im) is the distance transform of binary image im [25]. This is a standard process in
the level set method [20].

3. Evolve the initial level set according to the PDE (Equation (2)).

4. Vertical merge detection, as described above.

5. Repeat Step 2 until the change between two iterations is small (result converges) or the
number of iterations is larger than a predefined limit.

In our experiment, we found 10 iterations are usually enough to achieve good results. For details
of the level set method, please refer to [23].

10

4.3 Post-Processing

After growing the initial estimate of text lines using the level set method, most text line boundaries
are detected correctly, but a few fragments may still exist (Figure 2d) due to extraordinary large
horizontal word gaps. These fragmented pieces can be easily linked to obtain the final text lines
using a rule-based approach similar to connected components. Figure 2e shows the result after
broken line segment linking. Finally, we group the isolated connected components to their closest
major text line, if the distance is not too large. Otherwise, we label those far from any major
text line as noise. Figure 2f shows the final text line segmentation result using different colors to
distinguish neighboring text lines.

After text line boundary evolution using the level set method, linking of the remaining broken
lines is easy and reliable because only a few fragmented line segments occur and the average
length of a line segment is larger. Table 2 provides statistics about the number of component and
average component length at each stage on a handwritten Chinese document set. After boundary
evolution, the length of a line segment is almost 20 times of the connected components, on average.
The number of components also drops significantly to approximately 1/10 of the original number.
We further reduce the number of components by grouping broken line segments and isolated small
pieces.

Table 2: Statistics on components at different stages in our approach on a set of handwritten
Chinese documents.

Original image After evolving After post-processing
Average length of components (in pixels) 16 336 398

Number of components 1,179 97 26

5 Experiments

5.1 Dataset

In this section, we present a quantitative analysis of our algorithm on a large database. The UMD
test dataset was collected by the Language and Media Processing Laboratory at the University
of Maryland. Hard copies of handwritten documents were collected from many countries, such as
China, India, Korea, and Japan, and scanned at a resolution of 300 dot-per-inch (DPI) to binary
TIFF images. In summary, 7,528 heterogeneous handwritten documents from 439 writers in nine
scripts (Cyrillic, Greek, Hebrew, Hindi, Korean, Japanese, Persian, Chinese, and Thai) have been
collected. Table 3 shows some statistics for each script. A typical image size is approximately
2000× 1500 pixels, and the character sizes vary from roughly 10× 10 to 30× 30 pixels. We also
collected a large dataset of Arabic documents containing 166,071 images. We have selected some
for our experiments. Figure 4 shows some examples.

5.2 Overview of the Experiments

We organize our experiments and evaluation as follows. First, we present our evaluation method-
ology and overall quantitative result on our database, then we quantitatively compare our method

11

Table 3: Some statistics of the UMD dataset.
Script Chinese Cyrillic Greek Hebrew Hindi Japanese Korean Persian Thai
Pages 1,148 546 15 117 2,721 1,121 1,483 68 309
Writer 74 5 1 4 91 8 245 1 10

Figure 4: Handwriting examples in the UMD dataset.

with other classical methods. To show the robustness of our algorithm, we rotate, scale, and add
random noise to images to generate synthesized images, and test our algorithm on these synthe-
sized images. Segmented results are visualized using different colors, which denote different text
lines. Figure 5 shows the segmentation results of our algorithm on Figures. 1a and 1c. More
examples appear in Figure 6.

In all these experiments, we use the same parameters. Specifically, we use the same Gaussian
window and standard deviation for density estimation, and the number of iteration for region
growth is the same (10 iterations) as well. In our experiment, we set the standard deviations of
a 2D Gaussian kernel to 10 and 40 pixels in the horizontal and vertical directions, respectively.
Therefore, the size of the truncated window is 30 × 120 pixels, according to the discussion in
Section 3.2. We also demonstrate how these parameters influence the result at the end of this
section and give the best window size for the current dataset.

Four scripts, Arabic, Chinese, Hindi, and Korean, are used to illustrate the performance of
different methods in Section 5.3. We have ground-truthed 100 documents per script using the
VIPER Ground Truth Editor [26]. Since bounding boxes are not sufficiently accurate to delin-
eate the boundary of text lines, we use polygons for ground-truthing. In total, there are 7,660
handwritten text lines.

5.3 Evaluation Methodology

Traditionally in machine printed document analysis, the text line segmentation results are repre-
sented as rectangular bounding boxes. Therefore, the evaluation is often based on four coordinates

12

(a) (b)

Figure 5: Our algorithm’s results for Figure 1a and 1c, respectively.

of a bounding box. However, some overlaps inevitably occur among bounding boxes in curvilinear
handwritten documents. Non-overlapping closed curves are better, in the sense of representing
curvilinear handwritten text lines. By this representation, the evaluation can be done at the pixel
level, which is more accurate than that done at the bounding box level.

Supposing there are M ground-truthed lines and N detected lines, we construct an M × N
matrix P . An element Pij, for i = 1, . . . ,M and j = 1, . . . , N , of matrix P represents the number
of shared black pixels between the ith ground-truthed text line and jth detected line. We enforce
one-to-one correspondence between the detected lines and the ground truth. Since the number of
lines in two sets are different in general, we augment the matrix P to a square matrix P ′. A line is
allowed to be matched to a dummy line and this match has no shared pixels (Pij = 0). The square
matrix P ′ has a dimension max(M, N)×max(M, N). For each assignment of the correspondence
for ground truth S(k), k = 1, . . . ,max(M, N), the goodness G(S) of this assignment is the total
number of shared black pixels.

G(S) =
max(M,N)∑

k=0

P (k, S(k)) (10)

The best assignment So is the one with maximum goodness

So = arg max
S

G(S). (11)

The Hungarian algorithm [27] is used to search efficiently for the assignment problem.
The overall pixel-level hit rate is defined as

H =
G(So)

Number of black pixels in the ground-truth
. (12)

By using the pixel-level hit rate and the Hungarian algorithm, different segmentation errors, e.g.,
splitting, merging, and missing, can be appropriately penalized with weights proportional to the
number of pixels involved.

13

(a) (b)

(c) (d)

Figure 6: Color examples of text line segmentation results. (a) Handwriting with an irregular
document layout; (b) Handwritten text lines with rule lines; (c) Curvilinear handwritten text
lines; (d) A document mixed with handwritten and machine printed text lines.

We can also evaluate the performance at the text line level. One ground-truthed line i is claimed
to be correctly detected if

Pi,So(i)∑N
j=1 Pij

≥ 0.9 (13)

and,
Pi,So(i)∑M

i=1 Pij

≥ 0.9. (14)

In other words, if a ground-truthed line and the corresponding detected line share at least 90%
pixels with respect to both of them, a text line is claimed to be detected correctly. In the following
experiments, we evaluate the performance based on both the pixel-level hit rate and the text-line-
level detection rate.

5.4 Performance and Comparison

We organize our discussion on performance and comparison as follows. First, we briefly show the
accuracy on four scripts, then we discuss the performance on two different categories, handwriting
with and without rule lines. After that, we compare our performance with three other techniques.
As a top-down method, X-Y cut [3] builds a structural tree that represents the document layout.
The projection histogram analysis determines the cut in each step. Docstrum [1], on the other
hand, builds the layout structure bottom-up from the connected components. We can, therefore,
retrieve the text line level from the tree structure, although these methods are not designed solely

14

for text line segmentation. Our comparison experiments use a public domain implementation [28]
of the X-Y cut and Docstrum algorithms. In addition to these two classical methods, we also test
a locally adaptive connected component based method in Doclib [2].

5.4.1 Performance of Our Algorithm

Our method’s performance for different scripts is shown in the Figure 7, with details listed on the
second row of Tables 4 - 7. Overall, we achieve 94.7% accuracy in terms of pixel-level hit rate. The
standard deviation of the accuracy on all scripts is small, which shows our algorithm is stable. At
the text line level, there are a total of 7,660 ground-truthed lines in Tables 4-7, and our approach
can detect 6,982 (91.2%) of them correctly. Details are shown in the last column of Tables 4-7.
Our algorithm does not use script-dependent information, and we set the same parameter for all
scripts. The slightly degradation in performance is observed on Arabic documents because they
are less constrained (e.g., no rule lines).

(a) (b)

Figure 7: Bar charts of (a) pixel-level hit rate and (b) text-line-level detection rate of different
algorithms on different datasets.

Table 4: Quantitative comparison on 100 handwritten Arabic documents with a total of 2,691
text lines.

Pixel-level hit rate STD of pixel-level hit rate Detected text lines
Our method 92% 0.04 2,303 (85.6%)

Projection profile
based method [3]

58% 0.17 1,319 (57%)

Locally adaptive connected
component based method [2]

80% 0.11 1,799 (78%)

Docstrum based method [1] 84% 0.09 1,904 (82%)

Not all handwritten documents are truly freestyle and written on blank papers (e.g., Figure 8a).
Many, such as lecture notes and some drafts, are written on papers with rule lines (e.g., Figure 8c)
and they are more or less constrained by the rule lines. Therefore, we evaluate our performance

15

Table 5: Quantitative comparison on 100 handwritten Chinese documents with a total of 1,672
text lines.

Pixel-level hit rate STD of pixel-level hit rate Detected text lines
Our Method 98% 0.01 1,532 (92%)

Projection profile
based method [3]

58% 0.24 965 (57%)

Locally adaptive connected
component based method [2]

64% 0.12 1,131 (67%)

Docstrum based method [1] 94% 0.04 1,389 (83%)

Table 6: Quantitative comparison on 100 handwritten Hindi documents with a total of 1,365 text
lines.

Pixel-level hit rate STD of pixel-level hit rate Detected text lines
Our method 97% 0.02 1,295 (95%)

Projection profile
based method [3]

43% 0.37 673 (49%)

Locally adaptive connected
component based method [2]

78% 0.19 1,103 (80%)

Docstrum based method [1] 74% 0.22 996 (72%)

on both categories. Generally, rule lines make the handwritten text lines straight, but they may
also degrade the performance of the connected component analysis because the rule lines connect
arbitrary numbers of adjacent characters. The projection profile analysis may benefit from the
rule lines. However, we do not know the geometric relationship between handwritten text lines
and rule lines. It may cause errors in profile analysis. For example, writers may ignore the rule
lines. As another example, most Chinese handwritings are written over the rule lines, while Hindi
tend to overlap the top stroke with the rule lines in our collected database. To evaluate the
performance of our algorithm on these two categories, we prepared two sets of documents with
and without rule lines, each containing 100 documents chosen from all four scripts. The accuracy
of our algorithm on these two mixed sets is shown in the second row of Tables 9 and 8, respectively.
At the text line level, our approach can detect 1,466 out of 1,589 (93%) for documents with rule
lines, and 1,863 out of 2,178 (85%) for freestyle documents.

Generally, the major failures happen because two neighboring text lines touch each other signif-
icantly (e.g., Figure 9). Since two lines are connected in only few touched areas, a post-processing
to segment them horizontally is necessary to improve performance. We also notice the correction
in the gap between two lines (Figure 9a) may create many peaks in the density function estima-
tion, and it is not trivial to segment them. Other challenges include non-text objects such as
stamps, logos, and severe noise. We will measure the affect of noise at the end of this section.

5.4.2 Comparison with Other Methods

In this section, we compare our method with three other methods. Some previous work presented
the accuracies of their methods at the text line level, but none measured the accuracy at the pixel

16

Table 7: Quantitative comparison on 100 handwritten Korean documents with a total of 1,932
text lines.

Pixel-level hit rate STD of pixel-level hit rate Detected text lines
Our method 98% 0.01 1,852 (96%)

Projection profile
based method [3]

85% 0.13 1,633 (84%)

Locally adaptive connected
component based method [2]

83% 0.13 1,572 (81%)

Docstrum based method [1] 80% 0.14 1,499 (78%)

Table 8: Quantitative comparison on 100 handwritten documents with rule lines with a total of
1,589 text lines.

Pixel-level hit rate STD of pixel-level hit rate Detected text lines
Our method 98% 0.01 1,466 (93%)

Projection profile
based method [3]

79% 0.10 1,178 (74%)

Locally adaptive connected
component based method [2]

54% 0.34 849 (53%)

Docstrum based method [1] 62% 0.29 1,024 (64%)

level. The results of most traditional methods use bounding boxes, which may overlap each other
and cause confusion. To make pixel-level evaluation possible, we group pixels in the overlapping
area of bounding boxes to the closest text line.

Statistical results for different methods are shown in Figure 7, with details listed on the third
through fifth row of Tables 4-7. We achieve much better results in comparison to other methods,
regardless of scripts used. For example, the pixel-level hit rate of the connected component based
method is 78% in the Hindi dataset (Table 6), while our method is 97%. At the text line level,
these methods performs significantly worse. Table 6 shows only 996 (43%) text lines are detected
correctly using projection profile method in Hindi documents, which is significantly worse than
our method (95%). This is primarily because the top line of the Hindi words and the rule lines
introduce many false peaks in projection profile analysis. Generally, our algorithm is quite stable
for all four scripts.

Table 9 shows that the two connected component based methods perform better on freestyle
handwritten documents, such as the Arabic and the Hindi, while the projection profile based
method is better on documents with rule lines (Table 8). Comparing the same algorithm in two
categories, we observe the rule lines slightly improve the performance of the projection profile
based method, but they seriously deteriorate the performance of connected component based
methods. We found connected component based methods rely on some geometric measures, such
as the size of connected components, to filter spurious components (such as small noise dots
and big figures on the document) and guide the grouping of neighboring components. The nice
property of these geometric measures is destroyed by rule lines. On the contrary, our algorithm
does not filter anything before we detect the regions. Projection profile based methods do not
need to find connected components with suitable size as well, but they suffer with complex page

17

(a) (b)

(c) (d)

Figure 8: A freestyle document image (a) and a document image with rule lines (c). Results of
our algorithm are shown in (b) and (d), respectively

layouts and curvilinear lines. Examples are shown in Figure 10c and 10d. Text lines are easily
broken or merged incorrectly. In our result (e.g., Figure 10a), most text lines are clearly labeled
without confusion.

A good text line segmentation algorithm should process machine printed documents as well.
Figure 5b shows the segmentation results on a machine printed document without tuning param-
eters. It shows our algorithm performs better or comparably to traditional methods on machine
printed documents.

The connected component based methods and projection profile based methods are still useful
for determining the orientation of zones, size of characters, etc. However they do not work well for
handwritten text line segmentation. This comprehensive experiment demonstrates our method
can be used for handwritten documents, machine printed documents, and documents mixing
with machine-printed text and handwriting. Our assumption fits well for both machine-printed
and handwritten text lines. The statistical results show our method is better in handwritten

18

Table 9: Quantitative comparison on 100 freestyle handwritten documents with a total of 2,178
text lines.

Pixel-level hit rate STD of pixel-level hit rate Detected text lines
Our method 93% 0.03 1,863 (85%)

Projection profile
based method [3]

72% 0.16 1,537 (70%)

Locally adaptive connected
component based method [2]

81% 0.13 1,576 (73%)

Docstrum based method [1] 82% 0.15 1,751 (80%)

(a)

(b)

Figure 9: Failure examples of our method and their close-ups of the segmentation results.

documents than classical methods and their variations.

5.5 Robustness Test

In this section we examine the robustness of our algorithm to both changes in internal parameters
and changes to the input.

First, the internal parameters are changed in a wide range. Then the external input is varied by
rotation and scale. We then present the results on synthesized images with different noise levels.

5.5.1 Robustness with Respect to Internal Parameters

Two major components comprise our algorithm, the Parzen window based density estimation and
boundary evolution. The region’s evolutions become slow in the text line boundaries due to the
low value of the PDF. And if a region has a zero value, the boundary will stop at the region. Our
approach is very stable under reasonable number of iterations. In experiments, we did not find a
significant difference even we increase the iteration number for 10 to 100. We, therefore, evaluate
the Parzen window size in following.

We change the window size while keeping the standard deviations proportional to the window
size. In this way, we evaluate the performance of internal parameters. Figure 11 shows the
performance of different Parzen windows. The accuracy is visualized using a color map. The x
axis is the width of kernel window, the y axis is the height of kernel window. The best size of the
kernel window is 30 × 120 in our case. In all our experiments, we maintain these values.

19

5.5.2 Performance Under Scale and Rotation Changes

Our algorithm is not theoretically scale-invariant or rotation-invariant. In the following experi-
ments, we test our method on synthesized images under the changes of scale and rotation on the
four annotated datasets. The character size within images is affected by 1) scanning resolution
and 2) font size. Therefore, we can evaluate the sensitivity of our method by resizing the image
to mimic the change of character size. Figure 12 shows accuracy for different scales. It shows our
algorithm produces similar results with different character sizes. One example appears in Figure
13.

To illustrate how the skew degrades the performance, we rotate an image using different angles,
and compare the accuracy. Figure 14 shows the quantitative evaluation under different rotation
angles and Figure 15 shows one example under three different rotation angles. The performance
of our algorithm does not degrade significantly when orientation changes within [-10◦, 10◦]. For
most deskewed handwritten documents, the skew falls into this range. Experiments show our
algorithm can fit in most cases, with a deskew module as preprocessing.

By using the best internal parameters from Section 5.5.1, we observe a small peak in Figures
12 and 14. Overall, our performance shows it can tolerate input changes to some extent. The
density estimation is not sensitive to scale and rotation. Our algorithm is designed for curvilinear
text lines, so it can still output the expected result when the rotation is not significant (e.g., ±
10◦).

5.5.3 Performance Under Noise

Noise is a major issue in many computer vision problems. It can significantly degrade the result.
In our method, it mainly leads to the inaccurate density estimation. In principle, a good noise
model can be integrated in the density estimation module to compensate for the degradation and
improve the accuracy.

In this experiment, we demonstrate the performance using salt-and-pepper noise. By randomly
flipping the pixels in binary images, we can perform simulations with different probability. Figure
17 shows three images with different noise levels. Figure 16 gives a statistical analysis of accuracy
in terms of different noise probability for four scripts.

Results show our algorithm degrades elegantly under noise, and it can estimate the PDF when
the characters are not clear enough (e.g., 10% noise). Noise reduction and text restoration [29,
30, 31] are helpful but beyond the scope of our paper.

We have implemented our algorithm in C++. The average processing time for an image with
the size of approximately 2000 × 1500 pixels nears 20 seconds on a PC with 1.6 GHZ CPU and
1 GB memory. Our algorithm is relatively slow compared to other algorithms. The most time-
consuming part of our algorithm involves the computation of the partial derivatives in boundary
evolution. A more efficient implementation with the fast marching methods [32] may significantly
speed the algorithm.

6 Discussion, Conclusion, and Future work

In this paper, we proposed a novel and robust text line segmentation approach for freestyle
handwritten documents. Extensive comparison experiments show the proposed method consis-

20

tently outperforms the traditional text line segmentation methods, such as the projection based
top-down approaches and connected component based bottom-up approaches. Our approach is
script-independent since no script-specific knowledge is used in our approach. We achieve consis-
tently high accuracy on many scripts, such as Arabic, Hindi, Chinese, and Korean, using the same
parameter setting. Experiments show our algorithm is robust, and it degrades elegantly under
the changes of scales, rotation, and noise. Though originally developed with a binary image in
mind, our algorithm can extend to gray-scale and color document images without major change.

We observed that adjacent text lines may merge in our method if they significantly touch each
other. This wrong merge can be detected because the segmented text line has an abnormal height.
Further post-processing can be developed to detect the touching area and separate the merged
text lines. Under severe noise, the performance of the proposed method deteriorates. Document
enhancement techniques may be exploited to improve the performance.

References

[1] L. O’Gorman, “The document spectrum for page layout analysis,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 15, no. 11, pp. 1162–1173, 1993.

[2] S. Jaeger, G. Zhu, D. Doermann, K. Chen, and S. Sampat, “DOCLIB: A software library
for document processing,” in Document Recognition and Retrieval XIII, Proc. of SPIE vol.
6067, 2006, pp. 63–71.

[3] G. Nagy, S. Seth, and M. Viswanathan, “A prototype document image analysis system for
technical journals,” Computer, vol. 25, no. 7, pp. 10–22, 1992.

[4] R. Plamondon and S.N. Srihari, “Online and offline handwriting recognition: A comprehen-
sive survey,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, no. 1, pp. 63–84, 2000.

[5] Y. Li, Y. Zheng, and D. Doermann, “Detecting text lines in handwritten documents,” in
Proc. Int’l Conf. Pattern Recognition, 2006, pp. 1030–1033.

[6] Y. Li, Y. Zheng, D. Doermann, and S. Jaeger, “A new algorithm for detecting text line in
handwritten documents,” in Int’l Workshop on Frontiers in Handwriting Recognition, 2006,
pp. 35–40.

[7] S. Mao, A. Rosenfeld, and T. Kanungo, “Document structure analysis algorithms: a literature
survey,” in Document Recognition and Retrieval X, Proc. of SPIE vol. 5010, 2003, pp. 197–
207.

[8] A.K. Jain and B. Yu, “Document representation and its application to page decomposition,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 20, no. 3, pp. 294–308, 1998.

[9] J. Liang, I.T. Phillips, and R.M. Haralick, “Performance evaluation of document structure
extraction algorithms,” Computer Vision and Image Understanding, vol. 84, no. 1, pp. 144–
159, 2001.

21

[10] G. Nagy, “Twenty years of document image analysis in PAMI,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 22, no. 1, pp. 38–62, 2000.

[11] A. Simon, J.-C. Pret, and A. Johnson, “A fast algorithm for bottom-up document layout
analysis,” IEEE Trans. Pattern Anal. Machine Intell., vol. 19, no. 3, pp. 273–277, 1997.

[12] B. Yu and A. Jain, “A robust and fast skew detection algorithm for generic documents,”
Pattern Recognition, vol. 29, no. 10, pp. 1599–1629, 1996.

[13] R. Manmatha and J.L. Rothfeder, “A scale space approach for automatically segmenting
words from historical handwritten documents,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 27, no. 8, pp. 1212–1225, 2005.

[14] U.-V. Martin and H. Bunke, “Text line segmentation and word recognition in a system for
general writer independent handwriting recognition,” in Proc. Int’l Conf. Document Analysis
and Recognition, 2001, pp. 159–163.

[15] N. Tripathy and U. Pal, “Handwriting segmentation of unconstrained Oriya text,” in Int’l
Workshop on Frontiers in Handwriting Recognition, 2004, pp. 306–311.

[16] U. Pal and P.P. Roy, “Multioriented and curved text lines extraction from Indian documents,”
IEEE Trans. System, Man and Cybernetics – Part B: Cybernetics, vol. 34, no. 4, pp. 1676–
1684, 2004.

[17] A. Zahour, B. Taconet, P. Mercy, and S. Ramdane, “Arabic hand-written text-line extrac-
tion,” in Proc. Int’l Conf. Document Analysis and Recognition, 2001, pp. 281–285.

[18] Y. Zheng, H. Li, and D. Doermann, “A parallel-line detection algorithm based on HMM
decoding,” IEEE Trans. Pattern Anal. Machine Intell., vol. 27, no. 5, pp. 777–792, 2005.

[19] J. Sauvola, D. Doermann, and M. Pietikainen, “Locally Adaptive Document Skew Detection,”
in Document Recognition and Retrieval IV, Proc. of SPIE vol. 3027, 1997, pp. 96–108.

[20] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces. Springer, 2003.

[21] E. Parzen, “On estimation of a probability density function and mode,” Ann. Math. Stat.,
vol. 33, no. 3, pp. 1065–1076, 1962.

[22] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, 2nd ed. Wiley-Interscience
Publication, 2000, pp. 84–97.

[23] B. Sumengen, “Variational image segmentation and curve evolution on natural images,”
Ph.D. dissertation, University of California, Santa Barbara, Sept. 2004.

[24] W. Niblack, An Introduction to Digital Image Processing. Prentice Hall, Englewood Cliffs,
NJ, 1986, pp. 115–116.

[25] A. Rosenfeld and J. Pfaltz, “Sequential operations in digital picture processing,” J. of Assoc.
Compt Machinary, vol. 13, no. 4, pp. 471–494, 1966.

22

[26] D. Doermann and D. Mihalcik, “Tools and techniques for video performances evaluation,” in
Proc. Int’l Conf. Pattern Recognition, 2000, pp. 167–170.

[27] G. Liu and R.M. Haralick, “Optimal matching problem in detection and recognition perfor-
mance evaluation,” Pattern Recognition, vol. 35, no. 3, pp. 2125–2139, 2002.

[28] S. Mao and T. Kanungo, “Software architecture of PSET: A page segmentation evaluation
toolkit,” Int’l J. Document Analysis and Recognition, vol. 4, no. 3, pp. 205–217, 2002.

[29] H.S. Baird, “Calibration of document image defect models,” in Proc. Symp. Document Anal-
ysis and Information Retrieval, 1993, pp. 1–16.

[30] T. Kanungo, R.M. Haralick, and I. Phillips, “Nonlinear local and global document degrada-
tion models,” Int’l J. Imaging Systems and Technology, vol. 5, no. 4, pp. 220–230, 1994.

[31] M. Cannon, J. Hochberg, and P. Kelly, “Quality assessment and restoration of typewritten
document images,” Int’l J. Document Analysis and Recognition, vol. 2, no. 2-3, pp. 80–89,
1999.

[32] J. Sethian, Level Set Methods and Fast Marching Methods, Evolving Interfaces in Compu-
tational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge
University Press, 1999.

23

(a) (b) (c)

(d) (e)

Figure 10: Comparison with classical methods. (a) The original image; (b) Our method; (c) The
Docstrum method [1]; (d) The X-Y cut method [3]; (e) A locally adaptive connected component
based method [2].

24

Figure 11: Pixel-level hit rate of our method under the change of window size.

Figure 12: Pixel-level hit rate of our method under the change of scale.

25

(a) (b)

(c) (d)

Figure 13: Segmentation results for documents with different scales. (a) Original image; (b)
Result on the original image; (c) Result on the image scaled to 80%; (d) Result on the image
scaled to 120%.

Figure 14: Performance of our method under the change of rotation angles.

26

(a) (b)

(c) (d)

Figure 15: Segmentation results for documents with different rotations. (a) Original image; (b)
Result on the original image; (c) Result on the image rotated -10◦; (d) Result on the image rotated
10◦.

Figure 16: Performance of our method under the change of noise levels.

27

(a) (b) (c) (d)

Figure 17: Segmentation results for documents with different image quality. (a) Original image;
(b) Result on the original image; (c) Result on the image with 5% noise; (d) Result on the image
with 10% noise.

28

